Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.525
Filtrar
1.
Sci Total Environ ; 927: 172381, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604374

RESUMO

BACKGROUND: In fisheries, hypoxia stress is one of the most common environmental stresses that often lead to the death of large numbers of fish and cause significant economic losses. The pituitary, an important endocrine gland, lies below the hypothalamus region of the brain. It plays a crucial part in controlling vital physiological functions in fish, such as growth, reproduction, and responses to stress. However, the detailed mechanisms of how hypoxia affects these physiological processes via the pituitary remain largely unknown. METHODS: Fat greenlings (Hexagrammous otakii) were exposed to different dissolved oxygen (DO = 7. 6 mg/L and DO = 2 mg/L) for 24 h. miRNA-mRNA association analysis of H. otakii pituitary after hypoxia stress. Detecting apoptosis in H. otakii pituitary using Tunel and qPCR. Subsequent detection of hormones in H. otakii liver, gonads and serum by ELISA. RESULTS: In this study, hypoxia causes immune system disorders and inflammatory responses through the combined analysis of miRNAs and mRNAs. Subsequent verification indicated a significant accumulation of reactive oxygen species (ROS) subsequent to hypoxia treatment. The overproduction of ROS cause oxidative stress and apoptosis in the pituitary, ultimately causing pituitary damage and reduced growth hormone and luteinising hormone release. CONCLUSIONS: According to the association study of miRNA-mRNA, apoptosis problems caused by hypoxia stress result in H. otakii pituitary damage. In the meantime, this work clarifies the possible impact of hypoxia-stress on the pituitary cells, as well as on the gonadal development and growth of H. otakii.


Assuntos
Hipófise , Animais , Hipófise/metabolismo , Hipóxia , Apoptose , Espécies Reativas de Oxigênio/metabolismo
2.
Sci Rep ; 14(1): 8989, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637687

RESUMO

In mammals reproduction is regulated by many factors, among others by the peptides belonging to the RFamide peptide family. However, the knowledge concerning on the impact of recently identified member of this family (QRFP43) on the modulation of the gonadotrophic axis activity is still not fully understood and current research results are ambiguous. In the present study we tested the in vivo effect of QRFP43 on the secretory activity of the gonadotrophic axis at the hypothalamic-pituitary level in Polish Merino sheep. The animals (n = 48) were randomly divided into three experimental groups: controls receiving an icv infusion of Ringer-Locke solution, group receiving icv infusion of QRFP43 at 10 µg per day and 50 µg per day. All sheep received four 50 min icv infusions at 30 min intervals, on each of three consecutive days. Hypothalamic and pituitaries were collected and secured for further immunohistochemical and molecular biological analysis. In addition, during the experiment a blood samples have been collected for subsequent RIA determinations. QRFP43 was found to downregulate Kiss mRNA expression in the MBH and reduce the level of IR material in ME. This resulted in a reduction of GnRH IR material in the ME. QRFP43 increased plasma FSH levels while decreasing LH levels. Our findings indicate that QRFP43 inhibits the activity of the gonadotropic axis in the ovine at the level of the hypothalamus and may represent another neuromodulator of reproductive processes in animals.


Assuntos
Gonadotrofos , Hormônio Luteinizante , Feminino , Ovinos , Animais , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Hipófise/metabolismo , Gonadotrofos/metabolismo , Hormônio Foliculoestimulante , Mamíferos/metabolismo
3.
BMC Genomics ; 25(1): 392, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649819

RESUMO

BACKGROUND: The pituitary directly regulates the reproductive process through follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Transcriptomic research on the pituitaries of ewes with different FecB (fecundity Booroola) genotypes has shown that some key genes and lncRNAs play an important role in pituitary function and sheep fecundity. Our previous study found that ewes with FecB + + genotypes (without FecB mutation) still had individuals with more than one offspring per birth. It is hoped to analyze this phenomenon from the perspective of the pituitary transcriptome. RESULTS: The 12 Small Tail Han Sheep were equally divided into polytocous sheep in the follicular phase (PF), polytocous sheep in the luteal phase (PL), monotocous sheep in the follicular phase (MF), and monotocous sheep in the luteal phase (ML). Pituitary tissues were collected after estrus synchronous treatment for transcriptomic analysis. A total of 384 differentially expressed genes (DEGs) (182 in PF vs. MF and 202 in PL vs. ML) and 844 differentially expressed lncRNAs (DELs) (427 in PF vs. MF and 417 in PL vs. ML) were obtained from the polytocous-monotocous comparison groups in the two phases. Functional enrichment analysis showed that the DEGs in the two phases were enriched in signaling pathways known to play an important role in sheep fecundity, such as calcium ion binding and cAMP signaling pathways. A total of 1322 target relationship pairs (551 pairs in PF vs. MF and 771 pairs in PL vs. ML) were obtained for the target genes prediction of DELs, of which 29 DEL-DEG target relationship pairs (nine pairs in PF vs. MF and twenty pairs in PL vs. ML). In addition, the competing endogenous RNA (ceRNA) networks were constructed to explore the regulatory relationships of DEGs, and some important regulatory relationship pairs were obtained. CONCLUSION: According to the analysis results, we hypothesized that the pituitary first receives steroid hormone signals from the ovary and uterus and that VAV3 (Vav Guanine Nucleotide Exchange Factor 3), GABRG1 (Gamma-Aminobutyric Acid A Receptor, Gamma 1), and FNDC1 (Fibronectin Type III Domain Containing 1) played an important role in this process. Subsequently, the reproductive process was regulated by gonadotropins, and IGFBP1 (Insulin-like Growth Factor Binding Protein 1) was directly involved in this process, ultimately affecting litter size. In addition, TGIF1 (Transforming Growth Factor-Beta-Induced Factor 1) and TMEFF2 (Transmembrane Protein With EGF Like And Two Follistatin Like Domains 2) compensated for the effect of the FecB mutation and function by acting on TGF-ß/SMAD signaling pathway, an important pathway for sheep reproduction. These results provided a reference for understanding the mechanism of multiple births in Small Tail Han Sheep without FecB mutation.


Assuntos
Hipófise , RNA Longo não Codificante , RNA Mensageiro , Animais , Ovinos/genética , Hipófise/metabolismo , Feminino , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fertilidade/genética , Reprodução/genética , Perfilação da Expressão Gênica , Transcriptoma
4.
BMC Genomics ; 25(1): 309, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528494

RESUMO

BACKGROUND: Incubation behaviour, an instinct for natural breeding in poultry, is strictly controlled by the central nervous system and multiple neuroendocrine hormones and neurotransmitters, and is closely associated with the cessation of egg laying. Therefore, it is essential for the commercial poultry industry to clarify the molecular regulation mechanism of incubation behaviour. Here, we used high-throughput sequencing technology to examine the pituitary transcriptome of Changshun green-shell laying hen, a local breed from Guizhou province, China, with strong broodiness, in two reproductive stages, including egg-laying phase (LP) and incubation phase (BP). We also analyze the differences in gene expression during the transition from egg-laying to incubation, and identify critical pathways and candidate genes involved in controlling the incubation behaviour in the pituitary. RESULTS: In this study, we demonstrated that a total of 2089 differently expressed genes (DEGs) were identified in the pituitary, including 842 up-regulated and 1247 down-regulated genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that steroid biosynthesis pathway and neuroactive ligand-receptor interaction were significantly enriched based on DEGs commonly identified in pituitary. Further analysis revealed that SRC, ITGB4, ITGB3, PIK3R3 and DRD2 may play crucial roles in the regulation of incubation behaviour. CONCLUSIONS: We identified 2089 DEGs and the key signaling pathways which may be closely correlated with incubation in Changshun green-shell laying hens, and clarified the molecular regulation mechanism of incubation behaviour. Our results indicate the complexity and variety of differences in reproductive behaviour of different chicken breeds.


Assuntos
Galinhas , Transcriptoma , Animais , Feminino , Galinhas/metabolismo , Perfilação da Expressão Gênica , Hipófise/metabolismo , Hormônios/metabolismo
5.
Sci Rep ; 14(1): 5918, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467682

RESUMO

The pituitary functions as a master endocrine gland that secretes hormones critical for regulation of a wide variety of physiological processes including reproduction, growth, metabolism and stress responses. The distinct hormone-producing cell lineages within the pituitary display remarkable levels of cell plasticity that allow remodeling of the relative proportions of each hormone-producing cell population to meet organismal demands. The molecular mechanisms governing pituitary cell plasticity have not been fully elucidated. Our recent studies have implicated a role for the Musashi family of sequence-specific mRNA binding proteins in the control of pituitary hormone production, pituitary responses to hypothalamic stimulation and modulation of pituitary transcription factor expression in response to leptin signaling. To date, these actions of Musashi in the pituitary appear to be mediated through translational repression of the target mRNAs. Here, we report Musashi1 directs the translational activation, rather than repression, of the Prop1, Gata2 and Nr5a1 mRNAs which encode key pituitary lineage specification factors. We observe that Musashi1 further directs the translational activation of the mRNA encoding the glycolipid Neuronatin (Nnat) as determined both in mRNA reporter assays as well as in vivo. Our findings suggest a complex bifunctional role for Musashi1 in the control of pituitary cell function.


Assuntos
Hipófise , Proteínas de Ligação a RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Hipófise/metabolismo , Processamento de Proteína Pós-Traducional , Hormônios Hipofisários/metabolismo
7.
J Reprod Dev ; 70(2): 115-122, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38346724

RESUMO

The NR4A nuclear receptor family (NR4As), encompassing NR4A1, NR4A2, and NR4A3, exerts pivotal roles in cellular processes through intricate expression patterns and interactions. Despite the influence of some NR4As on anterior pituitary functions regulated by the hypothalamus, their physiological expression patterns remain unclear. In our prior work, we demonstrated the specific upregulation of NR4A3 in the rat anterior pituitary gland during the proestrus afternoon, coinciding with a gonadotropin surge. In this study, we investigated changes in pituitary Nr4a gene expression throughout the estrous cycle in rats and a gonadotropin surge-induced model. Nr4a1 and Nr4a2 gene expression significantly increased during proestrus, aligning with previous observations for Nr4a3. Furthermore, prolactin gene expression increased sequentially with rising Nr4a gene expression, while thyroid-stimulating hormone beta gene expression remained stable. Immunohistochemistry revealed a widespread and differential distribution of NR4A proteins in the anterior pituitary, with NR4A1 and NR4A3 being particularly abundant in thyrotrophs, and NR4A2 in gonadotrophs. In estrogen-treated ovariectomized rats, elevated luteinizing hormone secretion corresponded to markedly upregulated expression of Nr4a1, Nr4a2, and Nr4a3. In gonadotroph and somatomammotroph cell lines, gonadotropin- and thyrotropin-releasing hormones transiently and dose-dependently increased the expression of Nr4a genes. These findings suggest that hypothalamic hormone secretion during proestrus may induce the parallel expression of pituitary Nr4a genes, potentially influencing the pituitary gene expression program related to endocrine functions before and after ovulation.


Assuntos
Adeno-Hipófise , Hipófise , Feminino , Ratos , Animais , Proestro/fisiologia , Hipófise/metabolismo , Adeno-Hipófise/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Gonadotropinas/metabolismo
8.
Gen Comp Endocrinol ; 350: 114465, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38336122

RESUMO

We compared the endocrine status of the pituitary-gonad axis of wild and captive-reared greater amberjack (Seriola dumerili) during the reproductive cycle (April - July), reporting on the expression and release of the two gonadotropins for the first time in the Mediterranean Sea. Ovaries from wild females were characterized histologically as DEVELOPING in early May and SPAWNING capable in late May-July, the latter having a 3 to 4-fold higher gonadosomatic index (GSI). SPAWNING capable wild females exhibited an increase in pituitary follicle stimulating hormone (Fsh) content, plasma testosterone (T) and 17,20ß-dihydroxy-4-pregnen-3-one (17,20ß-P), while almost a 10-fold increase was observed in pituitary luteinizing hormone (Lh) content. An increasing trend of plasma 17ß-estradiol (E2) was also recorded between the two reproductive stages in wild females. Captive-reared females sampled during the reproductive cycle exhibited two additional reproductive categories, with REGRESSED females having extensive follicular atresia and fish in the REGENERATING stage having only primary oocytes in their ovaries. Pituitary content of Fsh and Lh, fshb and lhb expression and plasma levels of Fsh and Lh remained unchanged among the four reproductive stages in captive females, in contrast with plasma E2 and T that decreased in the REGENERATING stage, and 17,20ß-P which increased after the DEVELOPING stage. In general, no significant hormonal differences were recorded between captive-reared and wild DEVELOPING females, in contrast to SPAWNING capable females, where pituitary Lh content, plasma Fsh and T were found to be lower in females in captivity. Overall, the captive females lagged behind in reproductive development compared to the wild ones and this was perhaps related to the multiple handling of the sea cages where all the sampled fish were maintained. Between wild males in the DEVELOPING and SPAWNING capable stages, pituitary Lh content, plasma T and 17,20ß-P, and GSI exhibited 3 to 4-fold increases, while an increasing trend of pituitary Fsh content, lhb expression levels and plasma 11-ketotestosterone (11-KT) was also observed, and an opposite trend was observed in plasma Lh. Captive males were allocated to one more category, with REGRESSED individuals having no spermatogenic capacity. During the SPAWNING capable phase, almost all measured parameters were lower in captive males compared to wild ones. More importantly, captive males showed significant differences from their wild counterparts throughout the reproductive season, starting already from the DEVELOPING stage. Therefore, it appears that captivity already exerted negative effects in males prior to the onset of the study and the multiple handling of the cage where sampled fish were reared. Overall, the present study demonstrated that female greater amberjack do undergo full vitellogenesis in captivity, albeit with some dysfunctions that may be related to the husbandry of the experiment, while males, on the other hand, may be more seriously affected by captivity even before the onset of the study.


Assuntos
Atresia Folicular , Perciformes , Animais , Masculino , Feminino , Gonadotropinas/metabolismo , Hormônio Luteinizante/metabolismo , Reprodução , Hormônio Foliculoestimulante/metabolismo , Perciformes/metabolismo , Hipófise/metabolismo , Peixes/metabolismo
9.
Peptides ; 174: 171166, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38309582

RESUMO

Vasopressin (VP) is a nonapeptide made of nine amino acids synthesized by the hypothalamus and released by the pituitary gland. VP acts as a neurohormone, neuropeptide and neuromodulator and plays an important role in the regulation of water balance, osmolarity, blood pressure, body temperature, stress response, emotional challenges, etc. Traditionally VP is known to regulate the osmolarity and tonicity. VP and its receptors are widely expressed in the various region of the brain including cortex, hippocampus, basal forebrain, amygdala, etc. VP has been shown to modulate the behavior, stress response, circadian rhythm, cerebral blood flow, learning and memory, etc. The potential role of VP in the regulation of these neurological functions have suggested the therapeutic importance of VP and its analogues in the management of neurological disorders. Further, different VP analogues have been developed across the world with different pharmacotherapeutic potential. In the present work authors highlighted the therapeutic potential of VP and its analogues in the treatment and management of various neurological disorders.


Assuntos
Doenças do Sistema Nervoso , Vasopressinas , Humanos , Vasopressinas/uso terapêutico , Vasopressinas/metabolismo , Hipotálamo/metabolismo , Hipófise/metabolismo , Encéfalo/metabolismo , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/metabolismo , Receptores de Vasopressinas/metabolismo , Arginina Vasopressina/metabolismo
10.
Biol Reprod ; 110(4): 761-771, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38374691

RESUMO

Reproduction is a high energy consuming process, so long-term malnutrition can significantly inhibit gonadal development. However, little is known about the molecular mechanism by which fasting inhibits reproduction. Our present study found that fasting could dramatically induce insulin-like growth factor binding protein 1 (IGFBP1) expression in the liver, hypothalamus, pituitary and ovaries of grass carp. In addition, IGFBP1a in the hypothalamus-pituitary-gonad axis could inhibit the development of gonads. These results indicated that fasting may participate in the regulation of fish gonadal development through the mediation of IGFBP1a. Further studies found that IGFBP1a could markedly inhibit gonadotropin-releasing hormone 3 expressions in hypothalamus cells. At the pituitary level, IGFBP1a could significantly reduce the gonadotropin hormones (LH and FSH) expression by blocking the action of pituitary insulin-like growth factor 1. Interestingly, IGFBP1a could also directly inhibit the expression of lhr, fshr, and sex steroid hormone synthase genes (cyp11a, cyp17a, and cyp19a1) in the ovary. These results indicated that IGFBP1a should be a nutrient deficient response factor that could inhibit fish reproduction through the hypothalamus-pituitary-ovary axis.


Assuntos
Carpas , Ovário , Animais , Feminino , Ovário/metabolismo , Hipófise/metabolismo , Hipotálamo/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Reprodução
11.
Mol Imaging Biol ; 26(2): 351-359, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38263484

RESUMO

PURPOSE: Estrogen receptors (ER) are implicated in psychiatric disorders. We assessed if ER availability in the human brain could be quantified using 16α-[18F]-fluoro-17ß-estradiol ([18F]FES) positron emission tomography (PET). PROCEDURES: Seven post­menopausal women underwent a dynamic [18F]FES PET scan with arterial blood sampling. A T1-weighted MRI was acquired for anatomical information. After one week, four subjects received a selective ER degrader (SERD), four hours before the PET scan. Pharmacokinetic analysis was performed using a metabolite-corrected plasma curve as the input function. The optimal kinetic model was selected based on the Akaike information criterion and standard error of estimated parameters. Accuracy of Logan graphical analysis and standardized uptake value (SUV) was determined via correlational analyses. RESULTS: The reversible two-tissue compartment model (2T4k) model with fixed K1/k2 was preferred. The total volume of distribution (VT) could be more reliably estimated than the binding potential (BPND). A high correlation of VT with Logan graphical analysis was observed, but only a moderate correlation with SUV. SERD administration resulted in a reduced VT in the pituitary gland, but not in other regions. CONCLUSIONS: The optimal quantification method for [18F]FES was the 2T4k with fixed K1/k2 or Logan graphical analysis, but specific binding was only observed in the pituitary gland.


Assuntos
Encéfalo , Tomografia por Emissão de Pósitrons , Humanos , Feminino , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/metabolismo , Estradiol , Receptores de Estrogênio/metabolismo , Hipófise/metabolismo
12.
Endocr J ; 71(2): 101-118, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38220200

RESUMO

Accumulating evidence suggests that cellular heterogeneity in organs and cell-cell and tissue-tissue interactions are crucial for maintaining physical homeostasis and disease progression. Endocrine organs also exhibit cellular heterogeneity and comprise multiple cell types. For instance, the pituitary gland comprises five types of pituitary hormone-producing cells as well as non-hormone-producing supporting cells, such as fibroblasts, endothelial cells, and folliculostellate cells. However, the functional roles of the interactions between hormone-producing and non-producing cells in the pituitary gland remain incompletely understood. Over the past decade, emerging technologies such as single-cell and spatial transcriptomics have provided excellent tools for studying cellular heterogeneity and their interactions; however, the application of these technologies in endocrine research remains limited. This review provides an overview of these technologies and discusses their strengths and limitations. Additionally, we also summarize the potential future applications of single-cell and spatial transcriptomics in the study of endocrine organs and their disorders.


Assuntos
Células Endoteliais , Hipófise , Hipófise/metabolismo , Perfilação da Expressão Gênica , Transcriptoma
13.
Biofabrication ; 16(2)2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38277677

RESUMO

Conventional 2D or even recently developed 3Din vitroculture models for hypothalamus and pituitary gland cannot successfully recapitulate reciprocal neuroendocrine communications between these two pivotal neuroendocrine tissues known to play an essential role in controlling the body's endocrine system, survival, and reproduction. In addition, most currentvitroculture models for neuroendocrine tissues fail to properly reflect their complex multicellular structure. In this context, we developed a novel microscale chip platform, termed the 'hypothalamic-pituitary (HP) axis-on-a-chip,' which integrates various cellular components of the hypothalamus and pituitary gland with biomaterials such as collagen and hyaluronic acid. We used non-toxic blood coagulation factors (fibrinogen and thrombin) as natural cross-linking agents to increase the mechanical strength of biomaterials without showing residual toxicity to overcome drawbacks of conventional chemical cross-linking agents. Furthermore, we identified and verified SERPINB2 as a reliable neuroendocrine toxic marker, with its expression significantly increased in both hypothalamus and pituitary gland cells following exposure to various types of toxins. Next, we introduced SERPINB2-fluorescence reporter system into loaded hypothalamic cells and pituitary gland cells within each chamber of the HP axis on a chip, respectively. By incorporating this SERPINB2 detection system into the loaded hypothalamic and pituitary gland cells within our chip platform, Our HP axis-on-chip platform can better mimic reciprocal neuroendocrine crosstalk between the hypothalamus and the pituitary gland in the brain microenvironments with improved efficiency in evaluating neuroendocrine toxicities of certain drug candidates.


Assuntos
Sistemas Microfisiológicos , Hipófise , Hipófise/metabolismo , Hipotálamo/metabolismo , Encéfalo , Materiais Biocompatíveis/metabolismo
14.
Mol Cell Endocrinol ; 586: 112163, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38246572

RESUMO

NOTCH2 is expressed in pituitary stem cells and is necessary for stem cell maintenance, proliferation, and differentiation. However, the pathways NOTCH2 engages to affect pituitary development remain unclear. In this study, we hypothesized that glycoprotein hormone subunit A2 (GPHA2), a corneal stem cell factor and ligand for the thyroid stimulating hormone receptor (TSHR), is downstream of NOTCH2 signaling. We found Gpha2 is expressed in quiescent pituitary stem cells by RNAscope in situ hybridization and scRNA seq. In Notch2 conditional knockout pituitaries, Gpha2 mRNA is reduced compared with control littermates. We then investigated the possible functions of GPHA2. Pituitaries treated with a GPHA2 peptide do not have a change in proliferation. However, in dissociated adult pituitary cells, GPHA2 increased pCREB expression and this induction was reversed by co-treatment with a TSHR inhibitor. These data suggest GPHA2 is a NOTCH2 related stem cell factor that activates TSHR signaling, potentially impacting pituitary development.


Assuntos
Hipófise , Fator de Células-Tronco , Adulto , Humanos , Hipófise/metabolismo , Receptor Notch2/genética , Receptor Notch2/metabolismo , Receptores da Tireotropina , Fator de Células-Tronco/metabolismo , Células-Tronco/metabolismo
15.
J Anat ; 244(2): 358-367, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37794731

RESUMO

The primary cilium is an essential organelle that is important for normal cell signalling during development and homeostasis but its role in pituitary development has not been reported. The primary cilium facilitates signal transduction for multiple pathways, the best-characterised being the SHH pathway, which is known to be necessary for correct pituitary gland development. FUZ is a planar cell polarity (PCP) effector that is essential for normal ciliogenesis, where the primary cilia of Fuz-/- mutants are shorter or non-functional. FUZ is part of a group of proteins required for recruiting retrograde intraflagellar transport proteins to the base of the organelle. Previous work has reported ciliopathy phenotypes in Fuz-/- homozygous null mouse mutants, including neural tube defects, craniofacial abnormalities, and polydactyly, alongside PCP defects including kinked/curly tails and heart defects. Interestingly, the pituitary gland was reported to be missing in Fuz-/- mutants at 14.5 dpc but the mechanisms underlying this phenotype were not investigated. Here, we have analysed the pituitary development of Fuz-/- mutants. Histological analyses reveal that Rathke's pouch (RP) is initially induced normally but is not specified and fails to express LHX3, resulting in hypoplasia and apoptosis. Characterisation of SHH signalling reveals reduced pathway activation in Fuz-/- mutant relative to control embryos, leading to deficient specification of anterior pituitary fate. Analyses of the key developmental signals FGF8 and BMP4, which are influenced by SHH, reveal abnormal patterning in the ventral diencephalon, contributing further to abnormal RP development. Taken together, our analyses suggest that primary cilia are required for normal pituitary specification through SHH signalling.


Assuntos
Polaridade Celular , Cílios , Animais , Camundongos , Cílios/fisiologia , Proteínas Hedgehog/metabolismo , Camundongos Knockout , Hipófise/metabolismo , Proteínas/metabolismo
16.
Brain Struct Funct ; 229(1): 195-205, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38062204

RESUMO

Patients with Anorexia Nervosa (AN) and athletes share intense physical activity and pituitary hormonal disturbances related to absolute (AN) or relative (athletes) undernutrition. Pituitary gland (PG) structure evaluations in those conditions are scarce, and did not differentiate anterior from posterior lobe. We evaluated the structure-function relationship of anterior and posterior PG in AN and athletes, and potential reversibility of this alteration in a group of weight-recovered patients (AN_Rec). Manual delineation of anterior (AP) and posterior (PP) PG was performed on T1-weighted MR images in 17 women with AN, 15 women with AN_Rec, 18 athletes women and 25 female controls. Anthropometric, hormonal, and psychometric parameters were explored and correlated with PG volumes. AP volume (APV) was lower in AN (448 ± 82 mm3), AN_Rec (505 ± 59 mm3), and athletes (540 ± 101 mm3) vs. Controls (615 ± 61 mm3, p < 0.00001, p < 0.00001 and p = 0.02, respectively); and smaller in AN vs. AN_Rec (p = 0.007). PP volume did not show any differences between the groups. APV was positively correlated with weight (R = 0.36, p = 0.011) in AN, and luteinizing hormone (R = 0.35, p = 0.014) in total group. In AN, mean growth hormone (GH) was negatively correlated with global pituitary volume (R = 0.31, p = 0.031) and APV (R = 0.29, p = 0.037). Absolute and relative undernutrition led to a decreased anterior pituitary gland volume, which was reversible with weight gain, correlated with low bodyweight, and blockade of gonadal hypothalamic-pituitary axis. Intriguing inverse correlation between anterior pituitary gland volume and GH plasma level could suggests a low storage capacity of anterior pituitary gland and increased reactivity to low insulin-like growth factor type 1.


Assuntos
Anorexia Nervosa , Desnutrição , Adeno-Hipófise , Feminino , Humanos , Anorexia Nervosa/metabolismo , Hipófise/metabolismo , Adeno-Hipófise/metabolismo , Relação Estrutura-Atividade , Fator de Crescimento Insulin-Like I/metabolismo
17.
J Vet Med Sci ; 86(1): 71-76, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37981318

RESUMO

A 22-year and 9-month-old female Grevy's zebra (Equus grevyi) showed signs of polyuria, polydipsia, glucosuria, and muscle atrophy. Blood tests revealed hyperglycemia, hypertriglyceridemia, electrolyte imbalance, high levels of adrenocorticotropic hormone (ACTH) and cortisol, and low levels of hormones secreted by the pituitary pars distalis. Pathological examinations revealed a pituitary gland tumor and bilateral adrenal cortical hyperplasia. Pituitary tumor cells showed immunoreactivity for α-melanocyte-stimulating hormone and ACTH. The deposition of amyloid ß was observed in the parenchyma and vascular walls of the cerebrum. The zebra showed clinical signs of pituitary pars intermedia dysfunction and was histopathologically diagnosed with pituitary gland melanotroph adenoma. This case report provides insight into neoplastic and endocrine diseases associated with the aging of a zebra.


Assuntos
Adenoma , Neoplasias Hipofisárias , Feminino , Animais , Neoplasias Hipofisárias/veterinária , Melanotrofos/metabolismo , Melanotrofos/patologia , Peptídeos beta-Amiloides , Equidae , Hipófise/metabolismo , Hormônio Adrenocorticotrópico/metabolismo , Adenoma/veterinária , Adenoma/patologia
18.
J Diabetes Investig ; 15(1): 67-69, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37847092

RESUMO

The liver synthesizes and releases bile acids into the gut. Bile acids, either directly or indirectly, inhibit agouti-related peptide (AGRP)-B cells in the pars tuberalis of the pituitary gland. AGRP-B cells are assumed to promote pancreatic insulin secretion and/or to improve insulin sensitivities in insulin sensitive organs, resulting in improved glucose tolerance.


Assuntos
Insulina , Hipófise , Humanos , Proteína Relacionada com Agouti/metabolismo , Hipófise/metabolismo , Insulina/metabolismo , Glucose/metabolismo , Ácidos e Sais Biliares
19.
Biofactors ; 50(1): 58-73, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37431985

RESUMO

The pituitary is a vital endocrine organ for synthesis and secretion of gonadotropic hormones (FSH and LH), and the gonadotropin showed fluctuations in animals with different fecundity. Long non-coding RNAs (lncRNAs) have been identified as regulatory factors for the reproductive process. However, the profiles of lncRNAs and their roles involved in sheep fecundity remains unclear. In this study, we performed RNA-sequencing for the sheep pituitary gland associated with different fecundity, and identified a novel candidate lncRNA LOC105613571 targeting BDNF related to gonadotropin secretion. Our results showed that expression of lncRNA LOC105613571 and BDNF could be significantly upregulated by GnRH stimulation in sheep pituitary cells in vitro. Notably, either lncRNA LOC105613571 or BDNF silencing inhibited cell proliferation while promoted cell apoptosis. Moreover, lncRNA LOC105613571 knockdown could also downregulate gonadotropin secretion via inactivation AKT, ERK and mTOR pathway. In addition, co-treatment with GnRH stimulation and lncRNA LOC105613571 or BDNF knockdown showed the opposite effect on sheep pituitary cells in vitro. In summary, BDNF-binding lncRNA LOC105613571 in sheep regulates pituitary cell proliferation and gonadotropin secretion via the AKT/ERK-mTOR pathway, providing new ideas for the molecular mechanisms of pituitary functions.


Assuntos
Hormônio Luteinizante , RNA Longo não Codificante , Animais , Ovinos/genética , Hormônio Luteinizante/metabolismo , Hormônio Luteinizante/farmacologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Hipófise/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo
20.
Nucleic Acids Res ; 52(2): 572-582, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38084892

RESUMO

Single same cell RNAseq/ATACseq multiome data provide unparalleled potential to develop high resolution maps of the cell-type specific transcriptional regulatory circuitry underlying gene expression. We present CREMA, a framework that recovers the full cis-regulatory circuitry by modeling gene expression and chromatin activity in individual cells without peak-calling or cell type labeling constraints. We demonstrate that CREMA overcomes the limitations of existing methods that fail to identify about half of functional regulatory elements which are outside the called chromatin 'peaks'. These circuit sites outside called peaks are shown to be important cell type specific functional regulatory loci, sufficient to distinguish individual cell types. Analysis of mouse pituitary data identifies a Gata2-circuit for the gonadotrope-enriched disease-associated Pcsk1 gene, which is experimentally validated by reduced gonadotrope expression in a gonadotrope conditional Gata2-knockout model. We present a web accessible human immune cell regulatory circuit resource, and provide CREMA as an R package.


Assuntos
Gonadotrofos , Hipófise , Camundongos , Humanos , Animais , Hipófise/metabolismo , Gonadotrofos/metabolismo , Cromatina/genética , Cromatina/metabolismo , Sequências Reguladoras de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...